Monomeric CFTR in plasma membranes in live cells revealed by single molecule fluorescence imaging.

نویسندگان

  • Peter M Haggie
  • A S Verkman
چکیده

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel. There is indirect and conflicting evidence about whether CFTR exists in cell membranes as monomers, dimers, or higher order oligomers. We measured fluorescence intensities and photobleaching dynamics of distinct fluorescent spots in cells expressing functional CFTR-green fluorescent protein (GFP) chimeras. Intensity analysis of GFP-labeled CFTR in live cells showed single-component distributions with mean intensity equal to that of purified monomeric GFP, indicating monomeric CFTR in cell membranes. Fluorescent spots showed single-step photobleaching, independently verifying that CFTR is monomeric. Results did not depend on whether GFP was added to the CFTR N terminus or fourth extracellular loop or on whether CFTR chloride conductance was stimulated by cAMP agonists. Control measurements with a CFTR chimera containing two GFPs showed two-step photobleaching and a single-component intensity distribution with mean intensity twice that of monomeric GFP. These results provide direct evidence for monomeric CFTR in live cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.

Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red p...

متن کامل

Detection of single fluorescent proteins inside eukaryotic cells using two-photon fluorescence

Imaging single fluorescent proteins in a live cell is a challenging task because of the strong cellular autofluorescence. Autofluorescence can be minimized by reducing fluorescence excitation volume. Total internal reflection fluorescence (TIRF) microscopy has been routinely used to reduce excitation volume and detect single protein molecules in or close to cell membrane. However, the limited p...

متن کامل

Membrane destabilization by monomeric hIAPP observed by imaging fluorescence correlation spectroscopy.

Monomeric hIAPP significantly destabilizes both model and live cell membranes by increasing membrane fluidity. This interaction with membranes happens via carpet formation followed by lipid extraction in a concentration dependent manner and thus we propose that hIAPP aggregation prior to membrane interaction may not be necessary for its cytotoxicity.

متن کامل

Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes.

Imaging membranes in live cells with nanometer-scale resolution promises to reveal ultrastructural dynamics of organelles that are essential for cellular functions. In this work, we identified photoswitchable membrane probes and obtained super-resolution fluorescence images of cellular membranes. We demonstrated the photoswitching capabilities of eight commonly used membrane probes, each specif...

متن کامل

A New and Robust Method of Tethering IgG Surrogate Antigens on Lipid Bilayer Membranes to Facilitate the TIRFM Based Live Cell and Single Molecule Imaging Experiments

Our understanding of cell-cell interactions has been significantly improved in the past years with the help of Total Internal Reflection Fluorescence Microscope (TIRFM) in combination with an antigen presenting system supported by planar lipid bilayer (PLB) membranes, which are used to mimic the extensive receptor and ligand interactions within cell-cell contact interface. In TIRFM experiments,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 35  شماره 

صفحات  -

تاریخ انتشار 2008